Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation?

نویسندگان

  • Anna L Kiss
  • Erzsébet Botos
چکیده

Endocytosis--the uptake of extracellular ligands, soluble molecules, protein and lipids from the extracellular surface--is a vital process, comprising multiple mechanisms, including phagocytosis, macropinocytosis, clathrin-dependent and clathrin-independent uptake such as caveolae-mediated and non-caveolar raft-dependent endocytosis. The best-studied endocytotic pathway for internalizing both bulk membrane and specific proteins is the clathrin-mediated endocytosis. Although many papers were published about the caveolar endocytosis, it is still not known whether it represents an alternative pathway with distinct cellular compartments to avoid lysosomal degradation or ligands taken up by caveolae can also be targeted to late endosomes/lysosomes. In this paper, we summarize data available about caveolar endocytosis. We are especially focussing on the intracellular route of caveolae and providing data supporting that caveolar endocytosis can join to the classical endocytotic pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes.

We investigated the effects of inhibitors of clathrin-mediated endocytosis (chlorpromazine and K(+) depletion) and of caveolae-mediated uptake (filipin and genistein) on internalization of FITC-poly-l-lysine-labeled DOTAP/DNA lipoplexes and PEI/DNA polyplexes by A549 pneumocytes and HeLa cells and on the transfection efficiencies of these complexes with the luciferase gene. Uptake of the comple...

متن کامل

IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor.

The low-density lipoprotein receptor (LDLR) is a critical determinant of plasma cholesterol levels that internalizes lipoprotein cargo via clathrin-mediated endocytosis. Here, we show that the E3 ubiquitin ligase IDOL stimulates a previously unrecognized, clathrin-independent pathway for LDLR internalization. Real-time single-particle tracking and electron microscopy reveal that IDOL is recruit...

متن کامل

Dual pathways of internalization of the cholecystokinin receptor

Receptor molecules play a major role in the desensitization of agonist-stimulated cellular responses. For G protein-coupled receptors, rapid desensitization occurs via receptor phosphorylation, sequestration, and internalization, yet the cellular compartments in which these events occur and their interrelationships are unclear. In this work, we focus on the cholecystokinin (CCK) receptor, which...

متن کامل

Nanoparticle transport in epithelial cells: pathway switching through bioconjugation.

The understanding and control of nanoparticle transport into and through cellular compartments is central to biomedical applications of nanotechnology. Here, it is shown that the transport pathway of 50 nm polystyrene nanoparticles decorated with vitamin B12 in epithelial cells is different compared to both soluble B12 ligand and unmodified nanoparticles, and this is not attributable to B12 rec...

متن کامل

Lysosomal Trafficking of TGFBIp via Caveolae-Mediated Endocytosis

Transforming growth factor-beta-induced protein (TGFBIp) is ubiquitously expressed in the extracellular matrix (ECM) of various tissues and cell lines. Progressive accumulation of mutant TGFBIp is directly involved in the pathogenesis of TGFBI-linked corneal dystrophy. Recent studies reported that mutant TGFBIp accumulates in cells; however, the trafficking of TGFBIp is poorly understood. There...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2009